

Top: lacunar infarcts in basal ganglia; Bottom: infarcts in deep white matter

Intrahemispheric White Matter Tracts

Aging and Brain Structure

- Gray volume
- Number of neurons
- Neuronal density
- Neuronal features (e.g., size, pigment acquisition, dendrites)
- Synaptic density
- White matter volume and integrity
- Ventricular size

Aging and Neurochemistry

- ↓ Dopamine
- ↓ Acetylcholine
- ↓ Norepinephrine
- ↓ Serotonin
- VMDA receptors (but not AMPA or kainate)
- ↓ Cholinergic receptors

PET: Age related decline in dopamine transporter availability

Erixon-Lindroth N. et al. The role of the striatal dopamine transporter in cognitive aging. Psychiatry Res. 2005; 138

Communication in the aging brain

- >\psi number of synapses
- >\psi density/functionality of receptors
- $\triangleright \downarrow$ availability of key neurotransmitters
- ➤ White matter pathways develop lesions
- "Silent" focal cortical lesions

Normal

The American Heritage® Dictionary of the English Language, Fourth Edition

- Conforming with, adhering to, or constituting a norm, standard, pattern, level, or type; <u>typical</u>
- Functioning or occurring in a natural way; <u>lacking observable abnormalities or</u> <u>deficiencies.</u>

How about some good news?

Plasticity

- Changes that occur due to learning and experience
- Normal development
- Shift of functional organization after injury
- Synaptic pruning in aging elimination of weak synapses
- Apoptosis (programmed cell death) relinquishing cell after purpose is served
- Neuronal change (structure, synapses)
- Neurogenesis

Neurogenesis and Plasticity

- THEN: The brain is equipped with a finite complement of neurons. Once a neuron dies, it is never replaced. Therefore aging entails a relentless, subtractive process.
- NOW: The change in the absolute number of neurons is not significant. New neurons sprout in the hippocampus throughout the lifespan.

Roberto Cabeza Ph.D.

Duke U. Center for Cognitive Neuroscience

PET Brain Activity during Source Memory Task

Young Old-Low Old-High

Cabeza et al. (2002, Neuroimage)

- Old-Low performing subjects recruited similar PFC regions as young adults but used them inefficiently
- Old-High performing subjects compensated for age-related memory decline by reorganizing the episodic retrieval network
- → SUPPORTS COMPENSATION VIEW OF HAROLD Hemispheric Asymmetry Reduction in Old Adults

Cognitive Reserve

Yaakov Stern

- Relationship between brain pathology and cognitive effect is moderated by CR.
- CR composed of genetic and acquired (environmental) factors
- CR markers: education, occupation, leisure interests
- Greater CR → less impact on function with similar level of pathology
- Greater CR → Steeper decline once pathology overwhelms
- Neurophysiologic substrate?

Aging Scorecard

Bad News

- Degradation of cortical/subcortical networks
- ↓ Redundancy
- ↓ Connectivity

Good News

- Plasticity
- Compensation
- Reserve

Optimizing memory in aging

What factors are within our control?

National Institute on Aging

Cognitive Health in Older Adults

- Take care of your health
- Eat healthy foods
- Be physically active
- Keep your mind active
- Stay connected

The Nun Study

- NIA Longitudinal study of aging and Alzheimer's disease
- David Snowden Ph.D. (began at U. Minn., then to U Kentucky)
- Begun in 1986; ongoing
- Participants: 678 members of the School Sisters of Notre Dame, aged 75-102 at start of study, located in 7 centers throughout the US
- All participants agreed to brain donation

Potentially Controllable CVD Risk Factors

BEHAVIORS

- Cigarette smoking
- Poor nutrition
- Physical inactivity
- Excessive alcohol use

DISEASES

- HTN
- Hypercholesterolemia
- Diabetes
- Syndrome X (aka Metabolic s.; Insulin resistance s.)

BRAIN EFFECTS

- Atherosclerosis →
- Impaired cerebral blood flow →
- Brain infarction

Nutritional Risk Factors

Saturated fats and trans fats

- Saturated Fat: Meat, dairy
- Trans fat: Processed foods, fast foods, snack foods baked goods
- − ↑ serum cholesterol
- − ↑ atherosclerosis and CVD
- Unsaturated fats (e.g., veg oils, nuts, olives) protective

Homocysteine

- High level associated with ↑risk of CV events
- ¬↑ Risk of AD via potentiation of copper and Aβ peptide neurotoxicity
- Can be caused by deficiency in folic acid, B6, B12
- Although evidence for the benefit of lowering Hcy is lacking, patients at ↑ risk should be advised to get enough folic acid and B vitamins in their diet